Metric
-
class Metric
The base class of all kinds of metrics.
Subclassed by SBody::Newton, SBody::Schwarzschild
Public Functions
-
virtual std::string Name() = 0
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) = 0
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) = 0
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) = 0
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
int LocalInertialFrame(const double position[], TimeSystem time, gsl_matrix *coordinate)
Calculate the local inertial frame coordinate of the object at
position
, stored incoordinate
.- Parameters:
position – 8 dimensional vector
time – time systme of the object
coordinate – matrix with size 4×4
- Returns:
status
-
virtual int LagrangianToHamiltonian(double y[]) = 0
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) = 0
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) = 0
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) = 0
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) = 0
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) = 0
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double Redshift(const double y[], const double photon[], TimeSystem object_time, TimeSystem photon_time)
Calculate the redshift of the object, \(1+z\).
- Parameters:
y – 8 dimensional vector of the object
photon – photon traced to the object
object_time – time system of the object
photon_time – time system of the photon
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) = 0
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) = 0
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) = 0
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() = 0
Newton & Post-Newtonian
-
class Newton : public SBody::Metric
Post-Newtonian.
Subclassed by SBody::PN1
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double Redshift(const double y[], const double photon[], TimeSystem object_time, TimeSystem photon_time) override
Calculate the redshift of the object, \(1+z\).
- Parameters:
y – 8 dimensional vector of the object
photon – photon traced to the object
object_time – time system of the object
photon_time – time system of the photon
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
-
class PN1 : public SBody::Newton
Public Functions
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Schwarzschild
-
class Schwarzschild : public SBody::Metric
Subclassed by SBody::Kerr, SBody::ReissnerNordstrom
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
Reissner-Nördstrom
-
class ReissnerNordstrom : public SBody::Schwarzschild
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
Kerr
-
class Kerr : public SBody::Schwarzschild
Subclassed by SBody::Hayward, SBody::KerrNewman, SBody::KerrTaubNUT
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
Kerr-Newman
-
class KerrNewman : public SBody::Kerr
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
Kerr-Taub-NUT
-
class KerrTaubNUT : public SBody::Kerr
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override
Hayward
-
class Hayward : public SBody::Kerr
Public Functions
-
virtual std::string Name() override
Return the name of the metric.
- Returns:
name of the metric.
-
virtual int MetricTensor(const double position[], gsl_matrix *metric) override
Calculate the metric tensor at
position
, stored inmetric
.- Parameters:
position – 4 dimensional vector
metric – matrix with size 4×4
- Returns:
status
-
virtual double DotProduct(const double position[], const double x[], const double y[], const size_t dimension) override
Dot product of vector
x
andy
atposition
. \(g_{\mu\nu}x^\mu y^\nu\).- Parameters:
position – 4 dimensional vector, position to calcuate the dot product of
x
andy
.x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector, should be 3 or 4.
- Returns:
result
-
virtual double DistanceSquare(const double x[], const double y[], const size_t dimension) override
Calculate the square of the distance between
x
andy
atx
. \(g_{\mu\nu}(x^\mu-y^\mu)(x^\nu-y^\nu)\).- Parameters:
x – 4 dimensional vector
y – 4 dimensional vector
dimension – dimension of the vector
- Returns:
result
-
virtual int LagrangianToHamiltonian(double y[]) override
Convert the coordinate system from Lagrangian to Hamiltonian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int HamiltonianToLagrangian(double y[]) override
Convert the coordinate system from Hamiltonian to Lagrangian.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int FastTrace(const double r_observer, const double theta_observer, const double sin_theta_observer, const double cos_theta_observer, const double r_object, const double theta_object, const double phi_object, double &alpha, double &beta, double photon[]) override
Trace the photon from the observer to the target, using elliptic integrals.
- Parameters:
r_observer – radius of the observer, \(r_\text{obs}\).
theta_observer – theta of the observer, \(\theta_\text{obs}\).
sin_theta_observer – sin(theta_observer), \(\sin\theta_\text{obs}\).
cos_theta_observer – cos(theta_observer), \(\cos\theta_\text{obs}\).
r_object – radius of the target, \(r_\text{tar}\).
theta_object – theta of the target, \(\theta_\text{tar}\).
phi_object – phi of the target, \(\phi_\text{tar}\).
alpha – x position of the target in the observer’s view.
beta – y position of the target in the observer’s view.
photon – 9 dimensional vector, position and the velocity of the photon traced to the target. photon[8] is used to store the look back time.
- Returns:
status
-
virtual double Energy(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the energy of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double AngularMomentum(const double y[], TimeSystem time, DynamicalSystem dynamics) override
Calculate the angular momentum of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual double CarterConstant(const double y[], const double mu2, TimeSystem time, DynamicalSystem dynamics) override
Calculate the Carter constant of the object.
- Parameters:
y – 8 dimensional vector
time – time system of the object
dynamics – dynamical system of the object
- Returns:
result
-
virtual int NormalizeTimelikeGeodesic(double y[]) override
Normalize the timelike geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual int NormalizeNullGeodesic(double y[], double frequency = 1.) override
Normalize the null geodesic.
- Parameters:
y – 8 dimensional vector
- Returns:
status
-
virtual std::unique_ptr<Integrator> GetIntegrator(TimeSystem time, DynamicalSystem dynamics, MotionMode motion = GEODESIC) override
Get the integrator to calculate the motion of the object.
- Parameters:
time – time system of the object
dynamics – dynamical system of the object
motion – motion mode of the object
- Returns:
pointer to the integrator
-
virtual std::string Name() override