Utility

double SBody::absolute_accuracy

Global absolute accuracy.

double SBody::relative_accuracy

Global relative accuracy.

constexpr double SBody::M_2PI = 6.28318530717958647692528676655900576

\(2\pi\).

constexpr double SBody::M_PI2 = 9.86960440108935861883449099987615111

\(\pi^2\).

constexpr double SBody::M_SQRT27 = 5.19615242270663188058233902451761710

\(\sqrt{27}\)

constexpr double SBody::EPSILON = 1e-10

Epsilon, a small value. \(\varepsilon\).

constexpr double SBody::SIN_EPSILON = 1e-10

\(\sin\varepsilon\).

constexpr double SBody::COS_EPSILON = 0.999999999999999999995

\(\cos\varepsilon\).

constexpr double SBody::EPSILON_CIRCLE_AREA = M_PI * GSL_DBL_EPSILON

Area of a circle with radius of GSL_SQRT_DBL_EPSILON. \(\pi\varepsilon^2\).

constexpr int SBody::SAMPLE_NUMBER = 100

Sample number.

constexpr double SBody::ANGLE_INTERVAL = M_2PI / SAMPLE_NUMBER

The angle corresponding to the sample number.

constexpr double SBody::EPSILON_POLYGON_AREA = 0.06279051952931337 / ANGLE_INTERVAL * EPSILON_CIRCLE_AREA

Area of the regular polygon with SAMPLE_NUMBER edges.

Integrator

class Integrator

A wrapper of the gsl_odeiv2_evolve.

Public Functions

Integrator(int (*function)(double, const double*, double*, void*), int (*jacobian)(double, const double*, double*, double*, void*), void *params = nullptr, const gsl_odeiv2_step_type *type = gsl_odeiv2_step_rk8pd)

Construct a new Integrator object.

Parameters:
  • function – The function calculates

    \[\frac{\mathrm dy_i(t)}{\mathrm dt}=f_i\left[t,y_1(t),\dots,y_n(t)\right].\]

  • jacobian – The jacobian of the function

    \[J_{ij}=\frac{\partial f_i\left[t,y(t)\right]}{\partial y_j}.\]

  • params – The parameters passed to the function, like the PN parameter, or the spin of the black hole.

  • type – Type of the algorithms. Explicit embedded Runge-Kutta Prince-Dormand (8, 9) method is set by default.

~Integrator()

Destructor.

int Apply(double *t, double t1, double *h, double *y)

gsl_odeiv2_evolve_apply.

Parameters:
  • t – time.

  • t1 – maximum time not to be exceeded by the time step.

  • h – step size.

  • y – values of the integrated system.

Returns:

status

int ApplyStep(double *t, double t1, double *h, double *y)

gsl_odeiv2_evolve_apply.

Parameters:
  • t – time.

  • t1 – maximum time not to be exceeded by the time step.

  • h – step size.

  • y – values of the integrated system.

Returns:

status

int ApplyFixedStep(double *t, const double h, double *y)

gsl_odeiv2_evolve_apply_fixed_step.

Parameters:
  • t – time.

  • h – step size.

  • y – values of the integrated system.

Returns:

status

int Reset()

Resets the evolution function and the stepping function.

Returns:

status

int CheckCoordinate(double *y)
Parameters:

y

Returns:

status

Solver

class Solver

Subclassed by SBody::DerivativeSolver, SBody::FunctionSolver

FunctionSolver

class FunctionSolver : public SBody::Solver

DerivativeSolver

class DerivativeSolver : public SBody::Solver

MultiSolver

class MultiSolver

Subclassed by SBody::MultiDerivativeSolver, SBody::MultiFunctionSolver

MultiFunctionSolver

class MultiFunctionSolver : public SBody::MultiSolver

MultiDerivativeSolver

class MultiDerivativeSolver : public SBody::MultiSolver

GslBlock

class GslBlock

A wrapper of the gsl_vector, gsl_matrix, and gsl_permutation.

Public Functions

~GslBlock()

Destructor.

gsl_vector *VectorAlloc(size_t n)

gsl_vector_alloc, creates a vector of length n

Parameters:

n – length of the vector

Returns:

pointer

gsl_vector *VectorCalloc(size_t n)

gsl_vector_calloc, creates a vector of length n and initializes all the elements of the vector to zero.

Parameters:

n – length of the vector

Returns:

pointer

gsl_vector *VectorAllocFromBlock(gsl_block *block, const size_t offset, const size_t n, const size_t stride = 1)

gsl_vector_alloc_from_block, creates a vector as a slice of an existing block.

Parameters:
  • block – target block

  • offset – offset to the data block

  • n – length of the vector

  • stride – step-size of the vector

Returns:

pointer

gsl_vector *VectorAllocRowFromMatrix(gsl_matrix *matrix, const size_t i)

gsl_vector_alloc_row_from_matrix, allocates a new gsl_vector which points to the i-th row of the matrix.

Parameters:
  • matrix – target matrix

  • i – row index

Returns:

pointer

gsl_vector *VectorAllocColFromMatrix(gsl_matrix *matrix, const size_t j)

gsl_vector_alloc_col_from_matrix, allocates a new gsl_vector which points to the j-th column of the matrix.

Parameters:
  • matrix – target matrix

  • j – column index

Returns:

pointer

gsl_matrix *MatrixAlloc(size_t n1, size_t n2)

gsl_matrix_alloc, creates a matrix of size n1 rows by n2 columns.

Parameters:
  • n1 – rows of the matrix

  • n2 – columns of the matrix

Returns:

pointer

gsl_matrix *MatrixCalloc(size_t n1, size_t n2)

gsl_matrix_alloc, creates a matrix of size n1 rows by n2 columns and initializes all the elements of the matrix to zero

Parameters:
  • n1 – rows of the matrix

  • n2 – columns of the matrix

Returns:

pointer

gsl_permutation *PermutationAlloc(size_t n)

gsl_permutation_alloc, allocates memory for a new permutation of size n

Parameters:

n – size of the permutation

Returns:

pointer

gsl_permutation *PermutationCalloc(size_t n)

gsl_permutation_alloc, allocates memory for a new permutation of size n and initializes it to the identity

Parameters:

n – size of the permutation

Returns:

pointer

Math

double SBody::Dot(const double x[], const double y[], size_t dimension = 3)

Dot product of vector x and y. \(\vec{x}\cdot\vec{y}\).

Parameters:
  • x – vector

  • y – vector

  • dimension – dimension of the vector

Returns:

result

double SBody::Dot(const double x[], size_t dimension = 3)

Dot product of vector x. \(\vec{x}\cdot\vec{x}\).

Parameters:
  • x – vector

  • dimension – dimension of the vector

Returns:

result

double SBody::Norm(const double x[], size_t dimension = 3)

Euclidean norm of x. \(\|\vec{x}\|_2\).

Parameters:
  • x – vector

  • dimension – dimension of the vector

Returns:

result

int SBody::Cross(const double x[], const double y[], double z[])

Cross product of vector x and y, stored in z. \(\vec{z}=\vec{x}\times\vec{y}\).

Parameters:
  • x – 3 dimensional vector

  • y – 3 dimensional vector

  • z – 3 dimensional vector

Returns:

status

double SBody::DotCross(const double x[], const double y[], const double z[])

Dot product of vector x and the cross product of vector y and vector z. \(\vec{x}\cdot(\vec{y}\times\vec{z})\).

Parameters:
  • x – 3 dimensional vector

  • y – 3 dimensional vector

  • z – 3 dimensional vector

Returns:

result

double SBody::TriangleArea(double a, double b, double c)
double SBody::TriangleArea(const double x[], const double y[], const double z[])
int SBody::RotateAroundAxis(double x[], Axis axis, double angle)

Rotate vector x around the axis by angle.

Parameters:
  • x – 3 dimensional vector

  • axis – the rotation axis.

  • angle – in rad

Returns:

status

int SBody::CartesianToSpherical(const double cartesian[], double spherical[], size_t dimension = 8)
Parameters:
  • cartesian – 4 or 8 dimensional vector

  • spherical – 4 or 8 dimensional vector

  • dimension – 4 or 8.

Returns:

status

int SBody::CartesianToSpherical(double x[], size_t dimension = 8)
Parameters:
  • x – 4 or 8 dimensional vector

  • dimension – 4 or 8

Returns:

status

int SBody::SphericalToCartesian(const double spherical[], double cartesian[], size_t dimension = 8)
Parameters:
  • spherical – 4 or 8 dimensional vector

  • cartesian – 4 or 8 dimensional vector

  • dimension – 4 or 8.

Returns:

status

int SBody::SphericalToCartesian(double x[], size_t dimension = 8)
Parameters:
  • x – 4 or 8 dimensional vector

  • dimension – 4 or 8.

Returns:

status

int SBody::OppositeSign(double x, double y)

Return 1 if x, y have opposite signs, else 0.

Parameters:
  • x – number

  • y – number

Returns:

result

int SBody::MapTheta(const double theta_0, double y[])

The modified spherical coordiante maps the polar angle from \(\theta\in[0,\pi]\) to.

\[\begin{split} \theta'\equiv\begin{cases}\theta & (\theta\leq\pi/2)\\ \theta-\pi & (\theta>\pi/2)\end{cases}. \end{split}\]

Parameters:
  • theta_0 – theta in the last integration step

  • y – 8 dimensional vector

Returns:

status

double SBody::ModBy2Pi(double phi)

Return phi in \([0, 2\pi)\).

Parameters:

phi\(\phi\)

Returns:

result

double SBody::PhiDifference(double phi)

Similar to ModBy2Pi, but return phi in \([-\pi, \pi)\).

Parameters:

phi\(\phi\)

Returns:

result

double SBody::LinearInterpolation(double x, double x0, double x1, double y0, double y1)

Linear interpolation of points (x0, y0) and (x1, y1) at x.

\[y=\frac{y_0(x_1-x)+y_1(x-x_0)}{x_1-x_0}\]

Parameters:
  • x – position to evaluate \(y\)

  • x0\(x_0\)

  • x1\(x_1\)

  • y0\(y_0\)

  • y1\(y_1\)

Returns:

result

int SBody::LinearInterpolation(double x, double x0, double x1, const double y0[], const double y1[], double y[], size_t size)

Linear interpolation of vectors (x0, y0) and (x1, y1) at x, stored in y.

\[y=\frac{y_0(x_1-x)+y_1(x-x_0)}{x_1-x_0}\]

Parameters:
  • x – position to evaluate \(y\)

  • x0\(x_0\)

  • x1\(x_1\)

  • y0\(y_0\)

  • y1\(y_1\)

  • y\(y\)

  • size – size of the vectors

Returns:

status

int SBody::InterpolateSphericalPositionToCartesian(double t, double t0, double t1, const double y0[], const double y1[], double y[])

Linear interpolation of two spherical positions y0 and y1 at t, stored in y.

\[y=\frac{\text{SphericalToCartesian}(y_0)(t_1-t)+\text{SphericalToCartesian}(y_1)(t-t_0)}{t_1-t_0}\]

Parameters:
  • t – time to evaluate \(y\)

  • t0\(t_0\)

  • t1\(t_1\)

  • y0 – 8 dimensional vector, spherical, \(y_0\)

  • y1 – 8 dimensional vector, spherical, \(y_1\)

  • y – 8 dimensional vector, cartesian, \(y\)

Returns:

status

double SBody::Flux(double luminosity, double magnification, double redshift)

Calculate the bolometric flux. The result is.

\[F_\text{obs}=\frac{L_\text{src}}{(1+z)^2}\frac{\Omega_\text{src}}{\Omega_\text{obs}}.\]
The additional \((1+z)^{-1}\) comes from the expansion of the frequency that \((1+z)^{-1}=\frac{\nu_\text{obs}}{\nu_\text{src}}\).

Parameters:
  • luminosity – intrinsic luminosity of the source, \(L_\text{src}\)

  • magnification – magnification of the source, including the relativistic redshift and beaming, and gravitational lensing. \(\frac{\Omega_\text{src}}{(1+z)\Omega_\text{obs}}\)

  • redshift – relativistic redshift of the source, \(1+z\)

Returns:

result

double SBody::FluxDensity(double spectral_density, double magnification)

Calculate the flux density. The result is.

\[F_{\nu,\text{obs}}=\frac{L_{\nu,\text{src}}}{1+z}\frac{\Omega_\text{src}}{\Omega_\text{obs}}.\]

Parameters:
  • spectral_density – intrinsic spectral density of the source, \(L_{\nu,\text{src}}\)

  • magnification – magnification of the source, including the relativistic redshift and beaming, and gravitational lensing. \(\frac{\Omega_\text{src}}{(1+z)\Omega_\text{obs}}\)

Returns:

result

Elliptic Integrals

Calculate the elliptic integrals using the Legendre forms. Further information can be found in GSL Manual, Carlson (1988), Carlson (1989), Carlson (1991), and Carlson (1992).

double SBody::EllipticIntegral(int p5, double y, double x, double a5, double b5, double a1, double b1, double a2, double b2, double a3, double b3, double a4 = 1., double b4 = 0.)

\[\int_y^x(a_5+b_5t)^{p_5/2}\prod_{i=1}^4(a_i+b_it)^{-1/2}dt\]
.

Returns:

result

double SBody::EllipticIntegral2Complex(int p5, double y, double x, double a5, double b5, double f, double g, double h, double a1, double b1, double a4 = 1., double b4 = 0.)

\[\int_y^x(a_5+b_5t)^{p_5/2}(f+gt+ht^2)^{-1/2}\prod_{i=1,4}(a_i+b_it)^{-1/2}dt\]
.

Returns:

result

double SBody::EllipticIntegral4Complex(int p5, double y, double x, double a5, double b5, double f1, double g1, double h1, double f2, double g2, double h2)

\[\int_y^x(a_5+b_5t)^{p_5/2}\prod_{i=1}^2(f_i+g_it+h_it^2)^{-1/2}dt\]
.

Returns:

result

double SBody::Carlson_RC(double x, double y, gsl_mode_t mode = GSL_PREC_DOUBLE)
double SBody::Carlson_RJ(double x, double y, double z, double p, gsl_mode_t mode = GSL_PREC_DOUBLE)